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INFORMATION-THEORETIC NON-PARAMETRIC
UNIMODAL DENSITY ESTIMATION

by

P. Brockett, A. Charnes, K. Paick

Abstract

- \\"‘V)TAM' b(wehb

—We presentgpn information-theoretic method for nonparametric density
5 estimation which guarantees that the resu1tingAdensity is unimodal. The
method inputs data in the form of moment or quantile information and con-

sequently can handle both data derived and non-data derived information.

In the non-data derived situation it yields a method for obtaining uni-

modal Bayesian prior distribution,
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I. INTRODUCTIC%

In many problems encountered in engineering and signal processing,
it is useful to estimate the probability density function corresponding
to some random phenomenon under study. Often it is known that the
density is unimodal, and the first few cumulants can effectively be
estimated from the available data. However, the precise parametrié
formula for the generating density cannot be determined from physical
considerations alone and often might not match any of the commonly
assumed densities, even if a parametric model was appropriate.
Accordingly, the usual technique in applied research is to exercise a
procedure of nonparametric density estimation and then numerically obtain
the estimated density. There is usually no closed form solution to such
procedures (e.g., window estimates or kernel estimates), although
numerical computations such as likelihood ratio detection algorithms can
be implemented using these techniques. Unfortunately, the resulting
nonparametric density estimate obtained by smoothing the empirical
histogram usually does not exhibit unimodality even when it is known that
the true density is unimodal. The tail behavior of these density
estimates may not be wmonotonic. It is, however, exactly these tails
which are frequently the major object of interest.

In this paper we present a new method for unimodal nonparametric
density estimation which is not based upon smoothing the empirical
histogram per se. Instead, it uses a method of Kemperman's [1] for
transforming moment problems, and couples this with an information-
theoretic generalization of Laplace's famous "principle of insufficient

reason” to obtain a unimodal density estimate. The resulting density
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estimate is rendered in closed amalytic form and can easily be worked
with numerically, e.g., for optimal (likelihood ratio or Neyman-Pearson)
signal detection in noise.

It should be remarked that our method is also applicable to the
situation of prior information which is not necessarily data derived and
can be used for assessing a unimodal prior distribution for subsequent
Bayesian analysis. This topic will be pursued in a separate paper [2].

In section II we present the information-theoretic estimation
procedure that we have employed. In section III we present the method
used to transform the problem of unimodal density estimation to an
estimation problem involving an auxiliary variable. In section IV we
present the actual nonparametric estimation procedure which ensures a
unimodal density estimate and which exhibits certain pertinent
characteristics desired. In the final section, we give some numerical
results using both real and simulated data.

IT. MAXIMUM ENTROPY AND MDI DENSITY ESTIMATION

The concept of statistical information and density estimation for
numerical data is of paramount importance in statistics, economics,
engineering, signal detection, and other fields. Wiener [ 3] remarked
quite early, in 1948, that the Shannon measure of information from
statistical communication theory could eventually replace Fisher's
concept of statistical information for a sample. For example, using a
measure of informational distance between two measures first developed by
Kullback and Leibler [4] in 1951, following the work of Khinchin, it has
been shown how to estimate the order in an autoregressive time series
model, how to estimate the number of factors in a factor analysis model,
and how to analyze contingency tables (cf. Akaike [5,6] and Gokhale and
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Kullback [ 7]). Minimizing this statistical "distance" subject to the
given constraints is called "Khinchin-Kullback-Leibler" (K2L) estimation,
or “"minimum discrimination information* (MDI) estimation in the
literature. Mathematically the problem is to pick that density function
f which is "“as cloée as possible" to some given function g, and which

satisfies certain given moment constraints, e.g.,

ain  [fr(x) n (é.‘(;;.) Mas),

subject to
I‘o(x)f(x)l(d‘) wl= eo

; 4 d -
ti Ihl(x) (x)Mdx) = (2.1)

[m ()E(xINax) = 6,

Here ) is some dominating measure for f and g (usually Lebesgue measure
in the continuous case, or counting measure in the discrete case),
0. ..s0gare the given moment values for the moment functions a&),...,ay.
and s (x)=1l. The moment functions aj(x) may be used to generate moment
or cumulant constraints, e.g., when aj is a polynomial, or may generate
centile constraints, e.g., when aj is an indicator function for a
terminal interval.

In many applications there is no a priori choice of a distribution g

to serve as a goal density in (2.1). In this case we express our

ignorance by choosing all x values to be equally likely, i.e., g(x)=l.

In this case the MDI or K2 objective functional is of the form

JECR)nE(x) Mdx) = = E(x) in ?(lEY ) ¢




This is precisely minus the entropy of the density, and the MDI problem
becomes a maximum entropy (ME) problem. The ME criterion can be thought
of as taking the most "uncertain" distribution possible subject to the
given constraints. Accordingly, this principle of maximum entropy may be
construed as a new and important extension of the famous Laplace
*principle of insufficient reason," which postulates a uniform
distribution in situations in which nothing is known about the variable
in question. (See Guiasu [ 8] for more motivation and explanation of
these results.) Here the ME distribution is as close to uniform as
possible, subject to the given informational constraints.

The minimization of (2.1) subject to the given constraints is easily
carried out by Lagrange multipliers. The short derivation given below
can essentially be found in Guiasu [ 8].

Introducing a Lagrange multiplier for each constraint in (2.1) and,

changing from a minimization to a maximization, we wish to maximize

L= [£(x)n %%;} A(dx) - qo[oo-fao(x)f(,)k(dxi]

* oo * o) [0 fa (RE(x)AEX)]

or, equivalently,

L-2a8 = [ f(x) {"'" [8(" ~a,~a)a)(x)-apay(x)= - -+ -akak(x)]k(dx)

s(x)exp z Ey o184 (x)
= [ £(x) In [ ! }] ACdx)

f(x)

: k
g(x)exp{~L asa, (x)
< [ tx [ {f‘(‘:’) } -Jua:)
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The inequality follows since anxgx-1 with equality only at x=1. Thus,
the inequality becomes an equality when

k
£(x) = g(x) - ()] ’
x)exp 2;‘|111 x

and this becomes the maximizing density. We shall call (2.2) the MDI
i density (or the ME density if g(x)=1) subject to the constraints.

The numerical value of the constants aoj are found using the moment
constraints. In Brockett, Charnes, and Cooper[ 9] or Charnes, Cooper, and
i Seiford [10], it s shown how to obtain the constants «f as dual
3 variables in an unconstrained convex programming problem. We shall

discuss this  fact further 1in the section concerning numerical

computation, since in the dual formulation of the MDI problem the
computation is easily accomplished using any of a number of existing
nonlinear programming codes.

III. TRANSFORMING THE UNIMODAL DENSITY ESTIMATION PROBLEM

In this section we will show how to use the information that a
density is unimodal in the nonparametric estimation problem. The
technique to be used is borrowed from Professor J. H. B. Kemperman,
whose 1971 paper [ 1] also gives more advanced and wide ranging moment
transformation techniques.

A famous characterization of "zero" unimodal random variables (due
to L. Shepp following the work of Khinchin) is the following. Suppose Y
is unimodal with mode zero. Then Y=U-<X where U and X are independent,
and U is uniformly distributed over [ 0,1]. A proof of this result can be
found, for example, in Feller (Ref. 11, p 158), From the above result,

it follows immediately that
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En(Y) = Eh*(X) ,

where
he(x) = Ef(ux)Ix=x] = 3 { h(t)at
Our technique for solving the problem (2.1) in the unimodal case may
now be explained as follows. 1If Y is unimodal with mode m, then Y-m is
zero °® unimodal. First transform the given moment constraints
]a,-(x)fv(x)dx(x)wi on the original variable Y to constraints of the form

J'a*i*(x)fx(x)dx(x)=ei on an auxiliary variable X, where
* 1 ~
a4(x) ';f a(thmddy
o

If the mode is unknown, then a consistent estimator f may be used.
(See Sager [12] for such a nonparametric mode estimator.) We then solve
the transformed MDI problem involving the constrained estimation of fy.
Using the estimated X density we then transform back to obtain the
estimate for Y. If X is estimated by X, then Y is estimated by mtUeX,
and consequently is unimodal by Khinchin's theorem. The details are
given in the next section.
IV. OBTAINING THE ESTIMATED DENSITY
Decomposing the original variable Y via the Khinchin representation
Y-m=y.X, we can now transform the constraint set in (2.1) into
constraints involving X. Namely, by Kemperman's technique,
o = E[a1(M)] = £fas(v-mm)] = Efa¥(x)] ,
where

x xm
a:(x) = ;l‘-]ai(t*l)dt = % f aj(t)de
° a

As an illustration, if an original constraint on Y is a raw moment, say

a,(x) = x¥,




then it follows that

a}(x) = [(xtm)ktlgktl ]/(k+l)x

-k (kﬂ) xj-k-j/(k.u).

J=o\ J

Thus the corresponding constraint in the auxiliary variable X involves a
sum of moments up to order k. Similarly, if the constraint upon Y is a

probability or centile constraint we obtain, for example,

x = P{Y>g] = E[I (3] - E[I[;g"-_;] = Efa%(x) ],

[z,
where
*( .l - ol :
a*(x) = fzu_-fsdc x¢ln
1-22, xea

Having transformed the moment constraints on Y into constraints on

X, we then estimate the density for X via maximum entropy, viz., fy is the

solution to
max -Ifx(x)_zn fy (x)dr(x)

subject to
% = 1= [ fx(x)Nax)

9 - f a7 (x) £x(x) A(dx)

6 = [ (D Ex(x)Man)
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Using the sample data we are able to estimate the parameters
0),00+20 for the desired moment functions a](x),.az(x),...,ak(x) by g <
31,52,...,‘%. 1According to formula (2.2) the estimate for the density of !
Y
X is . N—a
1
- k * -
fx(x) = exp -1-,-:oq.1(x) . (4.2) :
- d

X The numerical value for the constants aj can be determined using the dual

convex programming formulation outlined in Brockett, Charnes, and Cooper

3 )

since (4.2) defines a member of the exponential family of distributions,

An additional advantage of the ME procedure described above is that

the wusual results concerning statistical properties (such as the
existence of sufficient statistics) are valid. Under mild conditions on

the estimator @ of @, it also follows that the parameter estimates are

asymptotically normally distributed with derivable covariance matrix (cf.
Kullback [13]). This allows for confidence interval statements to be
made concerning EX' .5

Now, since f, is estimated via (4.2), we may transform back to obtain

e
the distribution for Y. Using the relationship Y-m=U<X we have the '
estimated density function for Y:

1

—

1
foly) » ¢ - y-mu \ du y-m
Yy Y-'(Y") Lf( _)—-- dx
W) V" Jogniym 0 T D

So - - - e -k * g 1
H( LG(y—-) Ml AL T :
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e €XP {-E:aiai(x& dx if ygm
= . (4.4)
[m exp {-):aiai(x)} dx if yzm
y-m

t

The wunimodality of this density estimate is apparent since
-yf{,(y+m)=fx(y)..;0-
In the next section we give some examples using the above techniques.
V. NUMERICAL RESULTS

In this section we present several examples of the various types of
constraints (moment functions) and the resulting graphical display of the
estimated density. In the simulations we shall also display the "true"
density from which the data were obtained. Estimating the density for X
via minimum MDI (1.2) can easily be done by the duality theory given in
Charnes, Cooper, and Seiford {10].

The unimodal estimation parameters {ai} in the density fx(x) are
dual variables in the unconstrained convex programming problem (5.1),with
a?(x) replacing a,(x) and A(dx)=dx in (2.1). According to the duality
result of Charnes, Cooper, and Seiford [10], the problem (2.1) has an

unconstrained dual problem.

k k
max Y ;6 -]g(x) exp[- Y aia;(x)]dx . (5.1)
i=0 i=0

If the density is 'Eo be estimated over the entire interval (-«,»),
then some algebraic moment constraint must be included as one of the
constraining equations. For the numerical examples given in this section

we have used the expected value of the corresponding moment constraint on

e A T T



the auxiliary variable X which is E\/m%f\/ixlfx(x)dx.
A further result which should be noted is that if one wishes to

’ impose a continuity constraint upon the estimated density fY

F m, then this continuity constraint of Y translates into another moment

at the mode

constraint upon the auxiliary variable X of the form

0= Iak,;;(x) £x(x)dx s

where :k.,.l(x)-llx (there is no corresponding a,,,(x) constraint on Y,
but from (4.3) we see the constraint (5.2) amounts to fY(n-o)-fY(nﬂ-o)).
Three different goal densities were chosen for illustration:

sl(x) =1

[exe [ -(le-s)z-(-r;-r - '16)2] for |xl¢8

1 for Ix138

82(!) -

83(x) = X -«
R R [—7}

The goal density g;(x)=1 corresponds to maximum entropy estimation for
fx. To impose smoothness on the estimated density fY near the mode m, ~—4
the goal density gz(x) was used. This goal density behaves 1like the
constant 1 outside [x|<§, and dips smoothly to zero as |x|+0, i.e. the

goal density approximates the ME procedure given by gl(x), but constrains 1

the estimated density f'y to be smooth around the mode. The goal density
93(x) corresponds to the fy density which would result from fy being
normally distributed. Hence this goal density gives the “close to -
normality subject to constraints" interpretation for the estimated ‘
density f y*

10 B
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' Three examples of predictive distributions are presented. These are
FI simulated observations from a normal distribution, a Cauchy distribution,
and some real data from acoustical returns generated by biological
ii ) undersea noise in ambient background noise.

Normal Distribution

The following constraints were imposed:

(1) Y is unimodal with the most likely value for m as 5. fl“

(2) Prl~esy<s) = 0.5.

(3) Prlégys6] = 0.6826.
Figure 1 shows the estimated distribution for each of the goal densities. —_—
Note that, when the data 1is truly normal, reasonable estimates are
obtained using only the three pieces of information above. Our procedure
can also be used even i{f there are no data, but just auxiliary '“f
information (cf. Brockett, Charnes, and Paick [2]). j
Cauchy Distribution B

To determine the performance of this method when the moment n
constraints have been derived from data, we generated 1000 Cauchy random

numbers using the congruential generator RANF in the standard FORTRAN

1ibrary. The following moment constraints were prescribed using
estimates derived from the data.

(1) Y is unimodal with possible value between -400 and 400.

(2) The most likely value for m is O.

(3) The distribution of Y is symmetric about O.

(4) p[-3.5325¢v¢3.5325] = 0.8.

(5) Expected value of VY] = 1.427552.

11




Figure 2 shows the results of the calculation using the above information
for each of the goal densities.*
Distribution of Underwater Acoustic Returns
The ambient noise was recorded in a shallow water coastal region
which was dominated by acoustic energy from snapping shrimp. 30,000
recorded samples were used to obtain a distribution for these underwater
acoustic returns. The following information was obtained from the data:
1. Y is unimodal with possible values between -1024 and 767. |
2. The most likely value for m is 0.
3. The following probabilities are obtained from the data:
Pr[-1024<y<0] = 0.50
Pr[-1024¢v<-71] = 0.05
Pr[-20s¥<0] = 0.25
Pr[0<¥<20] = 0.25
prlosy<71] = 0.45
4, Expected value of \ITVT' = 5,03, as estimated from the data.
Figure 3 shows the predictive distribution for each of the goal densities

based on this information.

*
(Range/4)2 is adopted as a variance of the "normal" goal density 93(x)
for illustrative purposes. Although the variance of the Cauchy

distribution does not exist, the normal shape can still be a permissible

goal density.
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